
MATH2050B Mathematical Analysis I

Midterm Test 2 suggested Solution∗

Question 1. Let I (̸= ∅) be an interval and f : I → R. State the definitions/notations:

(i) f is continuous (cts) at x0 ∈ I.

(ii) f is uniformly continuous on I.

State the negation for each of (i), (ii).

Solution:

(i) We say that f is continuous at x0 if, given any number ε > 0, there exists δ(ε, x0) > 0 such
that if x is any point of I satisfying |x− x0| < δ(ε, x0), then |f(x)− f(x0)| < ε.

Negation: There exists ε0 > 0 such that for any δ > 0, there exists x′ ∈ I satisfying |x′−x0| < δ,
such that |f(x′)− f(x0)| ≥ ε0.

(ii) We say that f is uniformly continuous on I if for each ε > 0 there is a δ(ε) > 0 such that if
x, y ∈ I are any numbers satisfying |x− y| < δ(ε), then |f(x)− f(y)| < ε.

Negation: There exists an ε0 > 0 such that for every δ > 0 there are points xδ, yδ in I such that
|xδ − yδ| < δ and |f (xδ)− f (yδ)| ≥ ε0.

The negation can be alternatively be stated: There exists an ε0 > 0 and two sequences (xn) and
(yn) in I such that lim (xn− yn) = 0 and |f (xn)− f (yn)| ≥ ε0 for all n ∈ N.

Question 2. In the terminology of ε− δ, show that

lim
x→3

x2 + 7

x− 2
= 16.

Solution: Let ε > 0, take δ(ε) = min{ 1
2 ,

ε
35}.

Suppose |x− 3| < δ(ε), then

−1

2
< x− 3 <

1

2
i.e. 5

2
< x < 4,

which implies that x− 2 > 1
2 and |x− 13| < 21

2 .

∗please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.
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It follows that ∣∣∣∣x2 + 7

x− 2
− 16

∣∣∣∣ = ∣∣∣∣x2 + 7− 16x+ 32

x− 2

∣∣∣∣
=

∣∣∣∣x2 − 16x+ 39

x− 2

∣∣∣∣
=

|x− 3| · |x− 13|
|x− 2|

<
|x− 3| · |x− 13|

1
2

<
δ(ε) · 17

1
2

= 34δ(ε)

< ε.

Therefore limx→3
x2+7
x−2 = 16.

Question 3. Let I = [a, b] and suppose that f is cts on [a, b]. Show that

(i) f is uniformly cts on [a, b].

(ii) If f(a) > 0 > f(b) then ∃ x0 ∈ (a, b) such that f (x0) = 0.

Solution:

(i) Proof. Suppose on the contrary that f is not uniformly continuous on I. Then, by Q1(ii), there
exist ε0 > 0 and two sequences (xn) and (yn) in I such that |xn − yn| < 1/n and |f (xn)− f (yn)| ≥
ε0 for all n ∈ N. Since I is bounded, the sequence (xn) is bounded; by the Bolzano-Weierstrass
Theorem, there is a subsequence (xnk

) of (xn) that converges to an element z. Since a ≤ xnk
≤ b

for all n ∈ N, we obtain a ≤ limxnk
≤ b. It follows that the limit z belongs to I. It is clear that the

corresponding subsequence (ynk
) also converges to z, since

|ynk
− z| ≤ |ynk

− xnk
|+ |xnk

− z| .

Now if f is continuous at the point z, then both of the sequences (f (xnk
)) and (f (ynk

)) must
converge to f(z). But this is not possible since

|f (xn)− f (yn)| ≥ ε0

for all n ∈ N. Thus the hypothesis that f is not uniformly continuous on the closed bounded interval
I implies that f is not continuous at some point z ∈ I. Consequently, if f is continuous at every
point of I, then f is uniformly continuous on I.

(ii) Method 1:

Proof. We will generate a sequence of intervals by successive bisections. Let I1 := [a1, b1], where
a1 := a, b1 := b, and let p1 be the midpoint p1 := 1

2 (a1 + b1) . If f (p1) = 0, we take x0 := p1
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and we are done. If f (p1) ̸= 0, then either f (p1) > 0 or f (p1) < 0. If f (p1) > 0, then we
set a2 := p1, b2 := b1, while if f (p1) < 0 then we set a2 := a1, b2 := p1. In either case, we let
I2 := [a2, b2]; then we have I2 ⊂ I1 and f (a2) > 0, f (b2) < 0.

We continue the bisection process. Suppose that the intervals I1, I2, . . . , Ik have been obtained
by successive bisection in the same manner. Then we have f (ak) > 0 and f (bk) < 0, and we
set pk := 1

2 (ak + bk) . If f (pk) = 0, we take x0 := pk and we are done. If f (pk) > 0, we set
ak+1 := pk, bk+1 := bk, while if f (pk) < 0, we set ak+1 := ak, bk+1 := pk. In either case, we let
Ik+1 := [ak+1, bk+1] ; then Ik+1 ⊂ Ik and f (ak+1) > 0, f (bk+1) < 0.

If the process terminates by locating a point pn such that f (pn) = 0, then we are done. If the
process does not terminate, then we obtain a nested sequence of closed bounded intervals In :=

[an, bn] such that for every n ∈ N we have

f (an) > 0 and f (bn) < 0.

Furthermore, since the intervals are obtained by repeated bisection, the length of In is equal to
bn − an = (b − a)/2n−1. It follows from the Nested Intervals Property that there exists a point x0

that belongs to In for all n ∈ N. Since an ≤ x0 ≤ bn for all n ∈ N and lim (bn − an) = 0, it follows
that lim (an) = x0 = lim (bn) . Since f is continuous at x0, we have

lim (f (an)) = f(x0) = lim (f (bn)) .

The fact that f (an) > 0 for all n ∈ N implies that f(x0) = lim (f (an)) ≥ 0. Also, the fact that
f (bn) < 0 for all n ∈ N implies that f(x0) = lim (f (bn)) ≤ 0. Thus, we conclude that f(x0) = 0.

Consequently, x0 is a root of f.

Method 2:

Proof. Let E := {x ∈ [a, b] : f(x) > 0}. By the continuity of f on [a, b], there exist a′, b′ with
a < a′ < b′ < b such that

f(x) > 0 ≥ f(u), for any x ∈ [a, a′], for any x ∈ (x0, b).

Then [a, a′] ⊆ E and thus E is non-empty.

Let
x0 = supE ∈ [a′, b′],

which exists by the completeness of R. We claim that f(x0) = 0.

By the definition of supE, there exists an increasing sequence (xn) in E convergent to x0, and
a decreasing sequence (un) in (x0, b] \E convergent to x0 (eg. un = x0 +

1
n with all large enough n

such that x0 +
1
n < b).
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Then, we have f(xn) > 0 ≥ f(un), and it follows that

f(x0) = lim
n→∞

f(xn) ≥ 0 ≥ lim
n→∞

f(un) = f(x0).

This proves that f(x0) = 0. Finally, x0 ̸= a, b since f is nonzero at the endpoints, so a < x0 < b.

Question 4. State (without proof) all results/theorems that you have used in your answers for
Q3.

The Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a convergent
subsequence.

Sequential Criterion for Continuity: A function f : I → R is continuous at the point c ∈ I

if and only if for every sequence (xn) in I that converges to c, the sequence (f (xn)) converges to
f(c).

Nested Intervals Theorem: If In = [an, bn] , n ∈ N, is a nested sequence of closed bounded
intervals, then there exists a number ξ ∈ R such that ξ ∈ In for all n ∈ N.

Order preserving for limits of sequence: Let (xn) be a convergent sequence in R. If xn ≥ 0

for all n ∈ N, then lim
n→∞

xn ≥ 0. Also, if α < lim
n

yn < β then there exists N ∈ N such that
α < yn < β for all n ≥ N.
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