MATH2050B Mathematical Analysis I

Midterm Test 2 suggested Solution*

Question 1. Let I(# @) be an interval and f : I — R. State the definitions/notations:
(i) f is continuous (cts) at zg € 1.

(ii) f is uniformly continuous on I.

State the negation for each of (i), (ii).

Solution:

(i) We say that f is continuous at xg if, given any number ¢ > 0, there exists d(e, ) > 0 such

that if z is any point of I satisfying |z — xo| < (e, o), then |f(z) — f(zo)| < e.

Negation: There exists €g > 0 such that for any ¢ > 0, there exists 2’ € I satisfying |z’ —xq| < §,
such that |f(z') — f(xo)| > eo.

(ii) We say that f is uniformly continuous on [ if for each £ > 0 there is a §(¢) > 0 such that if
x,y € I are any numbers satisfying |« — y| < d(g), then |f(z) — f(y)] < e.

Negation: There exists an €9 > 0 such that for every § > 0 there are points x5, ys in I such that
w5 — ys| <& and |f (z5) — f (ys)| = €o-

The negation can be alternatively be stated: There exists an €9 > 0 and two sequences (z,,) and
(yn) in I such that lim (x,— y,) =0 and |f (x,,) — f (yn)| > &0 for all n € N.

Question 2. In the terminology of € — 4§, show that

2
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Solution: Let ¢ > 0, take §(c) = min{3, =}
Suppose |z — 3| < §(e), then
1 1 5
—§<w—3<§ i.e. §<m<4,

which implies that  —2 > £ and |z — 13| < 2}

*please kindly send an email to cyma@math.cuhk.edu.hk if you have any question.
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Therefore lim,_,3 I;f; = 16.

Question 3. Let I = [a,b] and suppose that f is cts on [a,b]. Show that

(i) f is uniformly cts on [a, b].

(ii) If f(a) > 0> f(b) then 3 o € (a,b) such that f (xg) =0.

Solution:

(i) Proof. Suppose on the contrary that f is not uniformly continuous on I. Then, by Q1(ii), there
exist £9 > 0 and two sequences (x,,) and (y,) in I such that |z, — y,| < 1/n and |f (z,) — f (yn)| >
go for all n € N. Since I is bounded, the sequence (x,) is bounded; by the Bolzano-Weierstrass
Theorem, there is a subsequence (z,,) of (x,) that converges to an element z. Since a < x,, <b
for all n € N, we obtain a < limz,, <b. It follows that the limit z belongs to I. It is clear that the
corresponding subsequence (yy,, ) also converges to z, since

|ynk - Zl < ‘ynk _xnk| + ‘xnk _Z‘ :

Now if f is continuous at the point z, then both of the sequences (f (z,,)) and (f (yn,)) must

converge to f(z). But this is not possible since

|f (2n) = f (yn)| = €0

for all n € N. Thus the hypothesis that f is not uniformly continuous on the closed bounded interval
I implies that f is not continuous at some point z € I. Consequently, if f is continuous at every

point of I, then f is uniformly continuous on I.
(ii) Method 1:

Proof. We will generate a sequence of intervals by successive bisections. Let I; := [a, b1], where

a1 = a,by := b, and let p; be the midpoint p; := 1 (a1 +b1). If f(p1) = 0, we take 29 := p



and we are done. If f(p;) # 0, then either f(p;) > 0 or f(p1) < 0. If f(p1) > 0, then we
set ag := pi1,by := by, while if f(p1) < 0 then we set as := a1,bs := p;. In either case, we let
I5 := [ag, bs; then we have Iy C I; and f (a2) > 0, f (b2) < 0.

We continue the bisection process. Suppose that the intervals I, Is,. .., I} have been obtained
by successive bisection in the same manner. Then we have f (ag) > 0 and f(by) < 0, and we
set p = %(ak. +bi). If f(pr) = 0, we take zp := pr and we are done. If f(px) > 0, we set
Ak+1 = Dk, brg+1 := by, while if f(px) < 0, we set agt1 := ak,br+1 = pi. In either case, we let
Ii1 = [ak41,bgt1]; then Iy C I and f (ag+1) > 0, f (br41) < 0.

If the process terminates by locating a point p,, such that f (p,) = 0, then we are done. If the
process does not terminate, then we obtain a nested sequence of closed bounded intervals I,, :=

[@n, by] such that for every n € N we have
flan) >0 and f(b,) <O.

Furthermore, since the intervals are obtained by repeated bisection, the length of I,, is equal to
b, — a, = (b—a)/2" 1. Tt follows from the Nested Intervals Property that there exists a point g
that belongs to I, for all n € N. Since a,, < x¢ < b, for all n € N and lim (b, — a,,) = 0, it follows

that lim (a,) = o = lim (b, ) . Since f is continuous at xg, we have

lim (f (an)) = £(wo) = lim (£ (b))

The fact that f (a,) > 0 for all n € N implies that f(z¢) = lim (f (a,)) > 0. Also, the fact that
f(by) <0 for all n € N implies that f(xo) = lim (f (b)) < 0. Thus, we conclude that f(zg) = 0.

Consequently, ¢ is a root of f.

Method 2:

Proof. Let E := {x € [a,b] : f(x) > 0}. By the continuity of f on [a,b], there exist a/,b" with
a < a <b <bsuch that

f(x) >0> f(u), foranyx € [a,d'], forany z € (z0,b).

Then [a,a’] € F and thus E is non-empty.
Let
o =sup E € [, V],
which exists by the completeness of R. We claim that f(z¢) = 0.

By the definition of sup E, there exists an increasing sequence (x,) in E convergent to zp, and
a decreasing sequence (uy,) in (z¢,b] \ E convergent to o (eg. u, = xo + + with all large enough n

such that zo + 1 < b).



Then, we have f(x,) > 0> f(uy), and it follows that

f(zo) = lim f(x,)>0> lim f(u,) = f(xo).

n—oo n—oo
This proves that f(z¢) = 0. Finally, 29 # a,b since f is nonzero at the endpoints, so a < xg < b.

Question 4. State (without proof) all results/theorems that you have used in your answers for
Q3.

The Bolzano-Weierstrass Theorem: A bounded sequence of real numbers has a convergent

subsequence.

Sequential Criterion for Continuity: A function f : I — R is continuous at the point ¢ € I

if and only if for every sequence (z,) in I that converges to ¢, the sequence (f (z,,)) converges to
f(e).
Nested Intervals Theorem: If I,, = [a,,b,],n € N, is a nested sequence of closed bounded

intervals, then there exists a number £ € R such that £ € I, for all n € N.

Order preserving for limits of sequence: Let (x,) be a convergent sequence in R. If z,, > 0
for all n € N, then lim z, > 0. Also, if « < limy, < B then there exists N € N such that
n—oo n
a <yp < pPforalln>N.



